Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1360499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455652

RESUMEN

Introduction: Males with acute spinal cord injury (SCI) frequently exhibit testosterone deficiency and reproductive dysfunction. While such incidence rates are high in chronic patients, the underlying mechanisms remain elusive. Methods and results: Herein, we generated a rat SCI model, which recapitulated complications in human males, including low testosterone levels and spermatogenic disorders. Proteomics analyses showed that the differentially expressed proteins were mostly enriched in lipid metabolism and steroid metabolism and biosynthesis. In SCI rats, we observed that testicular nitric oxide (NO) levels were elevated and lipid droplet-autophagosome co-localization in testicular interstitial cells was decreased. We hypothesized that NO impaired lipophagy in Leydig cells (LCs) to disrupt testosterone biosynthesis and spermatogenesis. As postulated, exogenous NO donor (S-nitroso-N-acetylpenicillamine (SNAP)) treatment markedly raised NO levels and disturbed lipophagy via the AMPK/mTOR/ULK1 pathway, and ultimately impaired testosterone production in mouse LCs. However, such alterations were not fully observed when cells were treated with an endogenous NO donor (L-arginine), suggesting that mouse LCs were devoid of an endogenous NO-production system. Alternatively, activated (M1) macrophages were predominant NO sources, as inducible NO synthase inhibition attenuated lipophagic defects and testosterone insufficiency in LCs in a macrophage-LC co-culture system. In scavenging NO (2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO)) we effectively restored lipophagy and testosterone levels both in vitro and in vivo, and importantly, spermatogenesis in vivo. Autophagy activation by LYN-1604 also promoted lipid degradation and testosterone synthesis. Discussion: In summary, we showed that NO-disrupted-lipophagy caused testosterone deficiency following SCI, and NO clearance or autophagy activation could be effective in preventing reproductive dysfunction in males with SCI.


Asunto(s)
Óxido Nítrico , Traumatismos de la Médula Espinal , Ratones , Masculino , Ratas , Humanos , Animales , Óxido Nítrico/metabolismo , Ratas Sprague-Dawley , Testosterona/metabolismo , Macrófagos/metabolismo , Traumatismos de la Médula Espinal/complicaciones
2.
BMC Cancer ; 24(1): 123, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267913

RESUMEN

BACKGROUND: Brain metastasis is a common outcome in non-small cell lung cancer, and despite aggressive treatment, its clinical outcome is still frustrating. In recent years, immunotherapy has been developing rapidly, however, its therapeutic outcomes for primary lung cancer and brain metastases are not the same, suggesting that there may be differences in the immune microenvironment of primary lung cancer and brain metastases, however, we currently know little about these differences. METHODS: Seventeen paired samples of NSCLC and their brain metastases and 45 other unpaired brain metastases samples were collected for the current study. Immunohistochemical staining was performed on all samples for the following markers: immune checkpoints CTLA-4, PD-1, PD-L1, B7-H3, B7-H4, IDO1, and EphA2; tumor-infiltrating lymphocytes (TILs) CD3, CD4, CD8, and CD20; tumor-associated microglia/macrophages (TAMs) CD68 and CD163; and tumor proliferation index Ki-67. The differences in expression of these markers were compared in 17 paired samples, and the effect of the expression level of these markers on the prognosis of patients was analyzed in lung adenocarcinoma brain metastases samples. Subsequently, multiplex immunofluorescence staining was performed in a typical lung-brain paired sample based on the aforementioned results. The multiplex immunofluorescence staining results revealed the difference in tumor immune microenvironment between primary NSCLC and brain metastases. RESULTS: In 17 paired lesions, the infiltration of CTLA-4+ (P = 0.461), PD-1+ (P = 0.106), CD3+ (P = 0.045), CD4+ (P = 0.037), CD8+ (P = 0.008), and CD20+ (P = 0.029) TILs in brain metastases were significantly decreased compared with primary tumors. No statistically significant difference was observed in the CD68 (P = 0.954) and CD163 (P = 0.654) TAM infiltration between primary NSCLC and paired brain metastases. In all the brain metastases lesions, the expression of PD-L1 is related to the time interval of brain metastases in NSCLC. In addition, the Cox proportional hazards regression models showed high expression of B7-H4 (hazard ratio [HR] = 3.276, 95% confidence interval [CI] 1.335-8.041, P = 0.010) and CD68 TAM infiltration (HR = 3.775, 95% CI 1.419-10.044, P = 0.008) were independent prognosis factors for lung adenocarcinoma brain metastases patients. CONCLUSIONS: Both temporal and spatial heterogeneity is present between the primary tumor and brain metastases of NCSLC. Brain metastases lesions exhibit a more immunosuppressive tumor immune microenvironment. B7-H4 and CD68+ TAMs may have potential therapeutic value for lung adenocarcinoma brain metastases patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Antígeno CTLA-4 , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral
3.
Environ Toxicol ; 39(1): 444-456, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792628

RESUMEN

Breast cancer mainly affects women and is the second leading cause of cancer-related deaths worldwide. Breast cancer affects women aged 15-59. The current study explored periplocin's anticancer activities against breast cancer MDA-MB-231 cells by down-regulating the PI3K/Akt/mTOR pathway. The MTT assay assessed control-treated and periplocin (2.5-50 µM) treated MDA-MB-231 cell viability. ROS accumulation and apoptosis levels in periplocin-treated cells were examined using DAPI, dual staining, and Annexin V-FITC/PI assays. Caspase enzymes were studied using assay kits. Flow cytometry was used to measure cell cycle distributions. Periplocin-treated cells were analyzed using RT-PCR assays and insilico analyses for the expression of PI3K/Akt/mTOR molecules. The periplocin treatment remarkably reduced the viability of the MDA-MB-231 cells, with an IC50 concentration of 7.5 µM. The fluorescent staining assays revealed a substantial increase in ROS levels and apoptotic events in the periplocin-treated cells. The flow cytometry analysis revealed that periplocin triggered apoptosis and arrested the cell cycle in G0/G1 phases. Periplocin increased the caspase-3, -8, and -9 enzyme activities. In MDA-MB-231 cells, Periplocin decreased PI3K/Akt/mTOR activity, and in silico analysis, Periplocin was inhibited by CDK8-Cyclin C interactions. Periplocin has anticancer properties against breast cancer and may be an effective therapeutic agent for treating breast cancer.


Asunto(s)
Neoplasias de la Mama , Saponinas , Transducción de Señal , Femenino , Humanos , Apoptosis , Neoplasias de la Mama/metabolismo , Ciclo Celular , Proliferación Celular , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno , Serina-Treonina Quinasas TOR/metabolismo , Células MDA-MB-231 , Saponinas/farmacología
4.
Opt Express ; 31(22): 36410-36419, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017794

RESUMEN

Optical rectification (OR) is a popular way to generate coherent terahertz radiation. Here, we develop a sub-picosecond mid-infrared (mid-IR) light source with a tailored wavelength and pulse duration for enhancing the OR efficiency. Numerical simulations for a LiNbO3-based OR with tilted pulse-front excitation are first conducted to determine the optimal parameters of pump wavelength and pulse duration, demonstrating that the OR efficiency pumped by 4-µm sub-picosecond (0.5-0.6 ps) pulses is approximately twice the value with 0.8-µm pump at the same conditions. Guided by the simulation results, we build a BaGa4Se7-based optical parametric chirped-pulse amplification system with 1030-nm thin-disk pump and broadband mid-IR seeds. The output performances of >200-µJ pulse energy, ∼600-fs pulse duration and 1-kHz pulse repetition rate are achieved in a spectral range tunable from 3.5 to 5 µm. The large energy scalability and high parameter tunability make the light source attractive to high-efficiency OR in various materials.

5.
Discov Oncol ; 14(1): 148, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566174

RESUMEN

OBJECTIVE TERT: is the most frequently mutated gene in adult glioblastomas (GBMs) defined by the 2021 World Health Organization classification system. The present study aims to explore differences in clinical characteristics and immune microenvironment between TERT mutant and wild-type GBM. METHODS: Three GBM-related cohorts consisting of 205 GBM patients in our cohort, 463 GBM patients without immune checkpoint inhibitor(ICI) therapy and 1465 tumour patients (including 92 GBM cases) receiving ICI treatment in the MSK cohort were included. Retrospective analysis and immunohistochemistry assay were used for investigating the local (including tumour cells, local immune cells, and seizures) and systemic (including circulating immune cells, coagulation-related functions, and prognosis) effects of TERT mutations. Besides, differences in genetic alterations and immunotherapy responses between TERT mutant and wild-type GBMs were also explored. RESULTS: We found that TERT mutant and wild-type GBMs possessed similar initial clinic symptoms, circulating immune microenvironment and immunotherapy response. With respect to that in TERT wild-type GBMs, mutations in TERT resulted in higher levels of tumour-infiltrating neutrophils, prolonged coagulation time, worse chemotherapy response and poorer overall survival. CONCLUSION: Mutations in TERT alter the local immune environment and decrease the sensitivity of GBM to chemotherapy.

6.
Biosci Rep ; 43(7)2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37417208

RESUMEN

BACKGROUND: Colon cancer is a common malignant tumor in the digestive tract. Exploring new treatment targets is of great significance for improving the survival rate of colon cancer patients. The present study mainly analyzes the impact of proliferation essential genes (PLEGs) on the prognosis and chemotherapy response of colon cancer patients, as well as identifying the expression and cellular functions of important PLEG. METHODS: The DepMap database was utilized for identification of PLEG in colon cancer cells. Through DEGs screening, WGCNA, univariate cox regression survival analysis, and LASSO, a PLEG signature (PLEGs) model was constructed. The impact of PLEGs on the prognosis of colon cancer patients and their response to chemotherapy was further analyzed. Finally, we conducted a random forest analysis and implemented functional experiments to investigate the prominent PLEG that is linked to the development of colon cancer. RESULTS: Based on the expression and prognosis of PLEG, we constructed a PLEGs prognosis model which can effectively predict the prognosis of colon cancer patients and their response to chemotherapy treatment. Random forest analysis showed that UBA1 is a key PLEG in the progression of colon cancer. Immunohistochemistry results revealed that UBA1 protein is significantly upregulated in colon cancer tissues. Cell functional experiments demonstrated that knocking down UBA1 can inhibit the proliferation, invasion, and migration abilities of colon cancer cells. CONCLUSION: PLEGs have the potential to serve as predictive biomarkers for prognosis and chemotherapy response in colon cancer patients. Among the PLEG, UBA1 plays a prominent role in promoting the malignant progression of colon cancer cells.


Asunto(s)
Neoplasias del Colon , Genes Esenciales , Humanos , Pronóstico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Proliferación Celular/genética
7.
Front Oncol ; 13: 1195467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361584

RESUMEN

Background: The purpose of this study is to present a series of primary intracranial sarcomas (PIS), a rare type of tumor of the central nervous system, in order to improve our understanding of the disease. These tumors are heterogeneous and prone to recurrence after resection, exhibiting a high mortality rate. As PIS has yet to be understood and studied on a large scale, it is vital for further evaluation and research. Methods: Our study included 14 cases of PIS. The patients' clinical, pathological, and imaging features were retrospectively analyzed. Additionally, targeted DNA next-generation sequencing (NGS) was applied for the 481-gene panel to detect gene mutations. Results: The average age for PIS patients was 31.4 years. Headache (7, 50.0%) was the most common symptom leading to the hospital visit. Twelve cases had PIS located in the supratentorial area and two in the cerebellopontine angle region. The maximum tumor diameter ranged from 19.0 mm to 130.0 mm, with an average diameter of 50.3 mm. Pathological types of tumors were heterogeneous, with chondrosarcoma being the most common, followed by fibrosarcoma. Eight of the 10 PIS cases that underwent MRI scanning showed gadolinium enhancement; 7 of these cases were heterogeneous, and 1 of them was garland-like. Targeted sequencing was performed in two cases and identified mutations in genes such as NRAS, PIK3CA, BAP1, KDR, BLM, PBRM1, TOP2A, DUSP2, and CNV deletions of SMARCB1. Additionally, the SH3BP5::RAF1 fusion gene was also detected. Of the 14 patients, 9 underwent a gross total resection (GTR), and 5 chose subtotal resection. Patients who underwent GTR displayed a trend toward superior survival. Among the 11 patients with available follow-up information, one had developed lung metastases, three had died, and eight were alive. Conclusion: PIS is extremely rare compared to extracranial soft sarcomas. The most common histological type of intracranial sarcoma (IS) is chondrosarcoma. Patients who underwent GTR of these lesions showed improved survival rates. Recent advancements in NGS aided in the identification of diagnostic and therapeutic PIS-relevant targets.

8.
Environ Sci Pollut Res Int ; 30(35): 83991-84001, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351754

RESUMEN

In order to evaluate the potential of recovering various valuable elements from vanadiferous titanomagnetite tailing (VTMT), the chemical and process mineralogical characterization of VTMT were investigated in this study by various analytical techniques such as XRF, XRD, optical microscopy, SEM, EDS, and AMICS. It was found that VTMT is a coarser powder in general; about 50% of the particle size is greater than 54.30 µm. The total iron content of the VTMT was 22.40 wt.%, and its TiO2 grade is 14.45 wt.%, even higher than those found in natural ilmenite ores. The majority of iron and titanium were located in ilmenite and hematite; 62.84% of hematite and 90.27% of ilmenite were present in monomeric form. However, there is still a portion of ilmenite and hematite embedded in gangue such as anorthite, diopside, and serpentite. For the recovery of valuable fractions such as Fe and TiO2 from VTMT, a treatment process including ball milling-high-intensity magnetic separation-one roughing and three refining flotation was proposed. Finally, a concentrate with TiO2 grade of 47.31% and total Fe (TFe) grade of 35.44% was produced; TiO2 and TFe had recovery rates of 57.71% and 28.23%, respectively. The recovered product is adequate as a raw material for the production of rutile. This study provides a reference and a new research direction for the recycling and comprehensive utilization of VTMT.


Asunto(s)
Hierro , Titanio , Hierro/química , Titanio/química
9.
BMC Cancer ; 23(1): 420, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161425

RESUMEN

BACKGROUND: Glioma is the most common and aggressive tumor in the adult brain. Recent studies have indicated that Zinc finger DHHC-type palmitoyltransferases (ZDHHCs) play vital roles in regulating the progression of glioma. ZDHHC15, a member of the ZDHHCs family, participates in various physiological activities in the brain. However, the biological functions and related mechanisms of ZDHHC15 in glioma remain poorly understood. METHODS: Data from multiple glioma-associated datasets were used to investigate the expression profiles and potential biological functions of ZDHHC15 in glioma. Expression of ZDHHC15 and its association with clinicopathological characteristics in glioma were validated by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemical experiments. GO enrichment analysis, KEGG analysis, GSEA analysis, CCK-8, EdU, transwell, and western blotting assays were performed to confirm the functions and mechanism of ZDHHC15 in glioma. Moreover, we performed Kaplan-Meier analysis and Cox progression analysis to explore the prognostic significance of ZDHHC15 in glioma patients. RESULTS: ZDHHC15 expression was significantly up-regulated in glioma and positively associated with malignant phenotypes. Results from the GO and KEGG enrichment analysis revealed that ZDHHC15 was involved in regulating cell cycle and migration. Knockdown of ZDHHC15 inhibited glioma cell proliferation and migration, while overexpression of ZDHHC15 presented opposite effects on glioma cells. Besides, results from GSEA analysis suggested that ZDHHC15 was enriched in STAT3 signaling pathway. Knockdown or overexpression of ZDHHC15 indeed affected the activation of STAT3 signaling pathway. Additionally, we identified ZDHHC15 as an independent prognostic biomarker in glioma, and higher expression of ZDHHC15 predicted a poorer prognosis in glioma patients. CONCLUSION: Our findings suggest that ZDHHC15 promotes glioma malignancy and can serve as a novel prognostic biomarker for glioma patients. Targeting ZDHHC15 may be a promising therapeutic strategy for glioma.


Asunto(s)
Glioma , Humanos , Pronóstico , Glioma/genética , Western Blotting , Encéfalo , Biomarcadores , Proteínas de Unión al ADN
10.
Brain Sci ; 13(4)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37190493

RESUMEN

Guillain-Barré syndrome (GBS) is a severe peripheral neuroinflammatory demyelinating disease characterized by symmetrical progressive limb weakness, which can be accompanied by cranial nerve and sensory disturbances. There is usually a history of bacterial or viral infection prior to onset. GBS is rarely seen after traumatic brain injury (TBI). We report a case of a 66-year-old male patient who presented with dilated pupils, followed by respiratory failure and symmetrical quadriplegia during a conservative treatment for TBI. He was eventually diagnosed with GBS and was treated with intravenous immunoglobulin, followed by rehabilitation therapy with a good recovery. We summarize previous similar cases and analyze possible causes. It is suggested that the possibility of GBS should be considered when unexplained symptoms occurred in patients with TBI, such as respiratory failure, dilated pupils, and limb weakness.

12.
Opt Express ; 31(5): 8864-8874, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859992

RESUMEN

We numerically demonstrate highly efficient mid-infrared quasi-parametric chirped-pulse amplification (QPCPA) based on a recently developed Sm3+-doped La3Ga5.5Nb0.5O14 (Sm:LGN) crystal. At pump wavelength around 1 µm, the broadband absorption of Sm3+ on idler pulses can enable QPCPA for femtosecond signal pulses centered at 3.5 or 5 µm, with a conversion efficiency approaching the quantum limit. Due to suppression of back conversion, such mid-infrared QPCPA exhibits robustness against phase-mismatch and pump-intensity variation. The Sm:LGN-based QPCPA will provide an efficient approach for converting currently well-developed intense laser pulses at 1 µm to mid-infrared ultrashort pulses.

13.
Curr Med Sci ; 43(2): 255-260, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36943542

RESUMEN

OBJECTIVE: This study was to examine the relationship between socioeconomic status and the incidence and mortality of non-Hodgkin lymphoma (NHL). METHODS: We compared the age-standardized incidence rate (ASIR), age-standardized mortality rate (ASMR), and the ASMR to ASIR ratio (MIR) at national and regional levels and studied the correlation between the MIR and the human development index (HDI) in 2012 and 2018. RESULTS: The highest ASIR was in North America in 2012 and in Australia in 2018, and the lowest ASIR was in Central and South Asia in both 2012 and 2018. The highest ASMR was in North Africa in both 2012 and 2018, and the lowest ASMR was in Eastern Asia and South-Central Asia in 2012 and in South-Central Asia in 2018. The lowest MIR was in Australia in both 2012 and 2018, and the highest MIR was in Western Africa in both 2012 and 2018. HDI was strongly negatively correlated with MIR (r: -0.8810, P<0.0001, 2012; r: -0.8895, P<0.0001, 2018). Compared to the 2012 data, the MIR in the intermediate HDI countries significantly deceased and the HDI in low and high HDI countries significantly increased in 2018. CONCLUSION: The MIR is negatively correlated with HDI. Increasing the HDI in low and intermediate HDI countries may reduce the MIR and increase the survival of patients with NHL.


Asunto(s)
Linfoma no Hodgkin , Humanos , Incidencia , Sur de Asia , Linfoma no Hodgkin/epidemiología
14.
Med Phys ; 50(3): 1680-1698, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36583665

RESUMEN

PURPOSE: In recent years, the FLASH effect, in which ultrahigh dose rate (UHDR) radiotherapy (RT) can significantly reduce toxicity to normal tissue while maintaining antitumor efficacy, has been verified in many studies and even applied in human clinical cases. This work evaluates whether a room-temperature radio-frequency (RF) linear accelerator (linac) system can produce UHDR high-energy X-rays exceeding a dose rate of 40 Gy/s at a clinical source-surface distance (SSD), exploring the possibility of a compact and economical clinical FLASH RT machine suitable for most hospital treatmentrooms. METHODS: A 1.65 m long S-band backward-traveling-wave (BTW) electron linac was developed to generate high-current electron beams, supplied by a commercial klystron-based power source. A tungsten-copper electron-to-photon conversion target for UHDR X-rays was designed and optimized with Monte Carlo (MC) simulations using Geant4 and thermal finite element analysis (FEA) simulations using ANSYS. EBT3 and EBT-XD radiochromic films, which were calibrated with a clinical machine Varian VitalBeam, were used for absolute dose measurements. A PTW ionization chamber detector was used to measure the relative total dose and a plane-parallel ionization chamber detector was used to measure the relative normalized dose of each pulse. RESULTS: The BTW linac generated 300-mA-pulse-current 11 MeV electron beams with 29 kW mean beam power, and the conversion target could sustain this high beam power within a maximum irradiation duration of 0.75 s. The mean energy of the produced X-rays was 1.66 MeV in the MC simulation. The measured flat-filter-free (FFF) maximum mean dose rate of the room-temperature linac exceeded 80 Gy/s at an SSD of 50 cm and 45 Gy/s at an SSD of 67.9 cm, both at a 2.1 cm depth of the water phantom. The FFF radiation fields at 50 cm and 67.9 cm SSD at a 2.1 cm depth of the water phantom showed Gaussian-like distributions with 14.3 and 20 cm full-width at half-maximum (FWHM) values, respectively. CONCLUSION: This work demonstrated the feasibility of UHDR X-rays produced by a room-temperature RF linac, and explored the further optimization of system stability. It shows that a simple and compact UHDR X-ray solution can be facilitated for both FLASH-RT scientific research and clinical applications.


Asunto(s)
Aceleradores de Partículas , Fotones , Humanos , Rayos X , Radiografía , Agua , Radiometría , Dosificación Radioterapéutica , Método de Montecarlo
15.
Cells ; 11(24)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552744

RESUMEN

Current treatments for lower-grade glioma (LGG) do not effectively improve life expectancy rates, and this is a major global health concern. Improving our knowledge of this disease will ultimately help to improve prevention, accurate prognosis, and treatment strategies. Pyroptosis is an inflammatory form of regulated cell death, which plays an important role in tumor progression and occurrence. There is still a lack of effective markers to evaluate the prognosis of LGG patients. We collected paraffin-embedded tissue samples and prognostic information from 85 patients with low-grade gliomas and fabricated them into a tissue microarray. Combining data from public databases, we explored the relationship between pyroptosis-related genes (PRGs) and the prognoses of patients with LGG and investigated their correlations with the tumor microenvironment (TME) by means of machine learning, single-cell, immunohistochemical, nomogram, GSEA, and Cox regression analyses. We developed a six-gene PRG-based prognostic model, and the results have identified CASP4 as an effective marker for LGG prognosis predictions. Furthermore, the effects on immune cell infiltration may also provide guidance for future immunotherapy strategies.


Asunto(s)
Glioma , Piroptosis , Humanos , Piroptosis/genética , Bases de Datos Factuales , Glioma/genética , Inmunoterapia , Conocimiento , Microambiente Tumoral
16.
Anal Chem ; 94(45): 15902-15907, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377429

RESUMEN

The photooxygenation of amyloid-ß (Aß) protein is considered a promising strategy against Alzheimer's disease (AD). The inhibition of Aß aggregation or depolymerization of Aß aggregates can effectively alleviate and improve the condition of AD. Herein, we report a series of "off-on" near-infrared quinolinium photosensitizers (QM20-QM22) based on D-π-A structures using a target-sensing catalyst activation (TaSCAc) strategy. They exhibit turn-on fluorescence when bonded to Aß aggregates and generate singlet oxygen to achieve the specific imaging and photooxygenation of Aß aggregates, leading to attenuated Aß aggregates, enhancing their clearance through the microglial lysosomal pathway, decreasing their neurotoxicity. This study will shed light on the development of the photooxygenation of misfolded proteins for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Medicina de Precisión , Humanos , Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Oxígeno Singlete/química , Fármacos Fotosensibilizantes/farmacología
17.
ACS Omega ; 7(40): 35496-35505, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36249390

RESUMEN

Increasing attention is currently obtained by the exploitation and utilization of unconventional energy sources globally. Jimusaer shale oil (JSO) was prepared by dry distillation from oil shale in Jimusaer, Xinjiang, China. Using n-heptane and toluene as solvents, saturate (SA), aromatic (AR), resin (RE), and asphaltene (AS) samples were produced from JSO. Samples were subsequently analyzed by elemental analysis (EA), thermogravimetric analysis (TG-DTG), infrared analysis (FT-IR), high-performance gel chromatography (GPC), and nuclear magnetic resonance (1H-NMR and 13C-NMR). In terms of basic properties, element content, classification of combustible minerals, and refining performance, JSO, which has a high H/C value, low carbon residue yield, low metal content, and excellent refining-processing performance, is considered a high-quality shale oil compared with the shale oil produced in other areas. The refining performance of JSO is even comparable with petroleum. According to column chromatography, the contents of SA, AR, RE, and AS in JSO are 54.32, 18.86, 25.81, and 1.01%, respectively. The results of FT-IR and NMR (1H-NMR and 13C-NMR) demonstrated that the chain alkane or aromatic cycloalkyl substituents of SA, AR, and RE decrease sequentially, while the number of aromatic rings and cycloalkane rings and the degree of condensation increase sequentially. These results indicate that the chain alkanes with a small number of cycloalkanes are the main component of SA. The AR and RE contain more thick-ring aromatic hydrocarbons. According to GPC, the molecular weight (M n) of JSO is 845 g·mol-1, and those of SA, AR, and RE are 702, 1107, and 2218 g·mol-1, respectively. The estimated molecular formulas (M af) of JSO, SA, AR, and RE, which were calculated based on the combined results of GPC and EA, are C57.91H115.60O1.38N0.79S0.04, C48.02H101.79O0.69N0.85S0.03, C76.96H137.16O1.08N1.87S0.09, and C156.24H247.75O1.46N4.42S0.32.

18.
Opt Lett ; 47(19): 5244-5247, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181232

RESUMEN

Yttrium calcium oxyborate (YCOB) crystals have been widely applied for generating intense near-infrared laser pulses by optical parametric amplification. Here, we show that the YCOB crystals oriented in both the XZ and XY principal planes possess broadband phase-matching property of intrapulse difference-frequency generation in the mid-infrared region. Few-cycle pulses tunable from 2 to 4 µm are experimentally produced by using a 7.5-fs pump laser at 800 nm, in which the conversion efficiency can be as high as 2.5%. With a large-size crystal and high-power pump laser, intrapulse difference-frequency generation based on YCOB may provide a new route for directly producing intense few-cycle mid-infrared pulses.

19.
Biomolecules ; 12(5)2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35625642

RESUMEN

As bulk chemicals, diols have wide applications in many fields, such as clothing, biofuels, food, surfactant and cosmetics. The traditional chemical synthesis of diols consumes numerous non-renewable energy resources and leads to environmental pollution. Green biosynthesis has emerged as an alternative method to produce diols. Escherichia coli as an ideal microbial factory has been engineered to biosynthesize diols from carbon sources. Here, we comprehensively summarized the biosynthetic pathways of diols from renewable biomass in E. coli and discussed the metabolic-engineering strategies that could enhance the production of diols, including the optimization of biosynthetic pathways, improvement of cofactor supplementation, and reprogramming of the metabolic network. We then investigated the dynamic regulation by multiple control modules to balance the growth and production, so as to direct carbon sources for diol production. Finally, we proposed the challenges in the diol-biosynthesis process and suggested some potential methods to improve the diol-producing ability of the host.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Alcoholes , Biocombustibles , Biomasa , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
20.
Biol Reprod ; 107(4): 1125-1138, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35594452

RESUMEN

In mammals, testis development is triggered by the expression of the sex-determining Y-chromosome gene SRY to commit the Sertoli cell (SC) fate at gonadal sex determination in the fetus. Several genes have been identified to be required to promote the testis pathway following SRY activation (i.e., SRY box 9 (SOX9)) in an embryo; however, it largely remains unknown about the genes and the mechanisms involved in stabilizing the testis pathway after birth and throughout adulthood. Herein, we report postnatal males with SC-specific deletion of Raptor demonstrated the absence of SC unique identity and adversely acquired granulosa cell-like characteristics, along with loss of tubular architecture and scattered distribution of SCs and germ cells. Subsequent genome-wide analysis by RNA sequencing revealed a profound decrease in the transcripts of testis genes (i.e., Sox9, Sox8, and anti-Mullerian hormone (Amh)) and, conversely, an increase in ovary genes (i.e., LIM/Homeobox gene 9 (Lhx9), Forkhead box L2 (Foxl2) and Follistatin (Fst)); these changes were further confirmed by immunofluorescence and quantitative reverse-transcription polymerase chain reaction. Importantly, co-immunofluorescence demonstrated that Raptor deficiency induced SCs dedifferentiation into a progenitor state; the Raptor-mutant gonads showed some ovarian somatic cell features, accompanied by enhanced female steroidogenesis and elevated estrogen levels, yet the zona pellucida 3 (ZP3)-positive terminally feminized oocytes were not observed. In vitro experiments with primary SCs suggested that Raptor is likely involved in the fibroblast growth factor 9 (FGF9)-induced formation of cell junctions among SCs. Our results established that Raptor is required to maintain SC identity, stabilize the male pathway, and promote testis development.


Asunto(s)
Rapaces , Células de Sertoli , Animales , Hormona Antimülleriana/genética , Estrógenos/metabolismo , Femenino , Factor 9 de Crecimiento de Fibroblastos/genética , Folistatina/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Masculino , Mamíferos/genética , Ratones , Rapaces/genética , Rapaces/metabolismo , Factor de Transcripción SOX9/genética , Células de Sertoli/metabolismo , Procesos de Determinación del Sexo/genética , Testículo/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...